Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.783
1.
J Hypertens ; 42(6): 1027-1038, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38690904

OBJECTIVE: Reno-renal reflexes are disturbed in cardiovascular and hypertensive conditions when elevated levels of pro-inflammatory mediators/cytokines are present within the kidney. We hypothesised that exogenously administered inflammatory cytokines tumour necrosis factor alpha (TNF-α) and interleukin (IL)-1ß modulate the renal sympatho-excitatory response to chemical stimulation of renal pelvic sensory nerves. METHODS: In anaesthetised rats, intrarenal pelvic infusions of vehicle [0.9% sodium chloride (NaCl)], TNF-α (500 and 1000 ng/kg) and IL-1ß (1000 ng/kg) were maintained for 30 min before chemical activation of renal pelvic sensory receptors was performed using randomized intrarenal pelvic infusions of hypertonic NaCl, potassium chloride (KCl), bradykinin, adenosine and capsaicin. RESULTS: The increase in renal sympathetic nerve activity (RSNA) in response to intrarenal pelvic hypertonic NaCl was enhanced during intrapelvic TNF-α (1000 ng/kg) and IL-1ß infusions by almost 800% above vehicle with minimal changes in mean arterial pressure (MAP) and heart rate (HR). Similarly, the RSNA response to intrarenal pelvic adenosine in the presence of TNF-α (500 ng/kg), but not IL-1ß, was almost 200% above vehicle but neither MAP nor HR were changed. There was a blunted sympatho-excitatory response to intrapelvic bradykinin in the presence of TNF-α (1000 ng/kg), but not IL-1ß, by almost 80% below vehicle, again without effect on either MAP or HR. CONCLUSION: The renal sympatho-excitatory response to renal pelvic chemoreceptor stimulation is modulated by exogenous TNF-α and IL-1ß. This suggests that inflammatory mediators within the kidney can play a significant role in modulating the renal afferent nerve-mediated sympatho-excitatory response.


Interleukin-1beta , Kidney , Sympathetic Nervous System , Tumor Necrosis Factor-alpha , Animals , Interleukin-1beta/pharmacology , Rats , Kidney/innervation , Kidney/drug effects , Male , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiology , Rats, Sprague-Dawley , Heart Rate/drug effects , Bradykinin/pharmacology , Reflex/drug effects , Blood Pressure/drug effects , Adenosine/administration & dosage , Adenosine/pharmacology , Saline Solution, Hypertonic/administration & dosage , Saline Solution, Hypertonic/pharmacology
2.
Physiol Behav ; 280: 114550, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38614416

Neuroinflammation in the early postnatal period can disturb trajectories of the completion of normal brain development and can lead to mental illnesses, such as depression, anxiety disorders, and personality disorders later in life. In our study, we focused on evaluating short- and long-term effects of neonatal inflammation induced by lipopolysaccharide, poly(I:C), or their combination in female and male C57BL/6 and BTBR mice. We chose the BTBR strain as potentially more susceptible to neonatal inflammation because these mice have behavioral, neuroanatomical, and physiological features of autism spectrum disorders, an abnormal immune response, and several structural aberrations in the brain. Our results indicated that BTBR mice are more sensitive to the influence of the neonatal immune activation (NIA) on the formation of neonatal reflexes than C57BL/6 mice are. In these experiments, the injection of lipopolysaccharide had an effect on the formation of the cliff aversion reflex in female BTBR mice. Nonetheless, NIA had no delayed effects on either social behavior or anxiety-like behavior in juvenile and adolescent BTBR and C57BL/6 mice. Altogether, our data show that NIA has mimetic-, age-, and strain-dependent effects on the development of neonatal reflexes and on exploratory activity in BTBR and C57BL/6 mice.


Animals, Newborn , Inflammation , Lipopolysaccharides , Mice, Inbred C57BL , Poly I-C , Animals , Female , Lipopolysaccharides/pharmacology , Male , Mice , Inflammation/chemically induced , Poly I-C/pharmacology , Anxiety/chemically induced , Social Behavior , Disease Models, Animal , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Behavior, Animal/drug effects , Behavior, Animal/physiology , Reflex/physiology , Reflex/drug effects
3.
J Appl Physiol (1985) ; 136(5): 1097-1104, 2024 May 01.
Article En | MEDLINE | ID: mdl-38511209

When contracting muscles are freely perfused, the acid-sensing ion channel 3 (ASIC3) on group IV afferents plays a minor role in evoking the exercise pressor reflex. We recently showed in isolated dorsal root ganglion neurons innervating the gastrocnemius muscles that two mu opioid receptor agonists, namely endomorphin 2 and oxycodone, potentiated the sustained inward ASIC3 current evoked by acidic solutions. This in vitro finding prompted us to determine whether endomorphin 2 and oxycodone, when infused into the arterial supply of freely perfused contracting hindlimb muscles, potentiated the exercise pressor reflex. We found that infusion of endomorphin 2 and naloxone in decerebrated rats potentiated the pressor responses to contraction of the triceps surae muscles. The endomorphin 2-induced potentiation of the pressor responses to contraction was prevented by infusion of APETx2, an ASIC3 antagonist. Specifically, the peak pressor response to contraction averaged 19.3 ± 5.6 mmHg for control (n = 10), 27.2 ± 8.1 mmHg after naloxone and endomorphin 2 infusion (n = 10), and 20 ± 8 mmHg after APETx2 and endomorphin 2 infusion (n = 10). Infusion of endomorphin 2 and naloxone did not potentiate the pressor responses to contraction in ASIC3 knockout rats (n = 6). Partly similar findings were observed when oxycodone was substituted for endomorphin 2. Oxycodone infusion significantly increased the exercise pressor reflex over its control level, but subsequent APETx2 infusion failed to restore the increase to its control level (n = 9). The peak pressor response averaged 23.1 ± 8.6 mmHg for control (n = 9), 33.2 ± 11 mmHg after naloxone and oxycodone were infused (n = 9), and 27 ± 8.6 mmHg after APETx2 and oxycodone were infused (n = 9). Our data suggest that after opioid receptor blockade, ASIC3 stimulation by the endogenous mu opioid, endomorphin 2, potentiated the exercise pressor reflex.NEW & NOTEWORTHY This paper provides the first in vivo evidence that endomorphin 2, an endogenous opioid peptide, can paradoxically increase the magnitude of the exercise pressor reflex by an ASIC3-dependent mechanism even when the contracting muscles are freely perfused.


Acid Sensing Ion Channels , Muscle Contraction , Muscle, Skeletal , Naloxone , Oligopeptides , Receptors, Opioid, mu , Reflex , Animals , Male , Rats , Acid Sensing Ion Channels/metabolism , Analgesics, Opioid/pharmacology , Blood Pressure/drug effects , Blood Pressure/physiology , Muscle Contraction/drug effects , Muscle Contraction/physiology , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Naloxone/pharmacology , Narcotic Antagonists/pharmacology , Oligopeptides/pharmacology , Oxycodone/pharmacology , Oxycodone/administration & dosage , Physical Conditioning, Animal/physiology , Rats, Sprague-Dawley , Receptors, Opioid, mu/metabolism , Reflex/drug effects , Reflex/physiology
4.
Toxins (Basel) ; 14(2)2022 01 28.
Article En | MEDLINE | ID: mdl-35202132

Botulinum neurotoxin (BoNT) is commonly used to manage focal spasticity in stroke survivors. This study aimed to a perform comprehensive assessment of the effects of BoNT injection. Twelve stroke subjects with spastic hemiplegia (age: 52.0 ± 10.1 year; 5 females) received 100 units of BoNT to the spastic biceps brachii muscles. Clinical, biomechanical, electrophysiological, and neuro-motor assessments were performed one week (wk) before (pre-injection), 3 weeks (wks) after, and 3 months (mons) after BoNT injection. BoNT injection significantly reduced spasticity, muscle strength, reflex torque, and compound muscle action potential (CMAP) amplitude of spastic elbow flexors (all p < 0.05) during the 3-wks visit, and these values return to the pre-injection level during the 3-mons visit. Furthermore, the degree of reflex torque change was negatively correlated to the amount of non-reflex component of elbow flexor resistance torque. However, voluntary force control and non-reflex resistance torque remained unchanged throughout. Our results revealed parallel changes in clinical, neurophysiological and biomechanical assessment after BoNT injection; BoNT injection would be more effective if hypertonia was mainly mediated by underlying neural mechanisms. BoNT did not affect voluntary force control of spastic muscles.


Botulinum Toxins/administration & dosage , Hemiplegia/drug therapy , Muscle Spasticity/drug therapy , Neuromuscular Agents/administration & dosage , Stroke/drug therapy , Action Potentials/drug effects , Adult , Biomechanical Phenomena , Chronic Disease , Cross-Sectional Studies , Elbow , Female , Hemiplegia/etiology , Humans , Male , Middle Aged , Muscle Spasticity/etiology , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Reflex/drug effects , Stroke/complications , Survivors , Torque
5.
J Neurophysiol ; 127(1): 267-278, 2022 01 01.
Article En | MEDLINE | ID: mdl-34879205

Brainstem respiratory neuronal network significantly contributes to cough motor pattern generation. Neuronal populations in the pre-Bötzinger complex (PreBötC) represent a substantial component for respiratory rhythmogenesis. We studied the role of PreBötC neuronal excitation and inhibition on mechanically induced tracheobronchial cough in 15 spontaneously breathing, pentobarbital anesthetized adult cats (35 mg/kg, iv initially). Neuronal excitation by unilateral microinjection of glutamate analog d,l-homocysteic acid resulted in mild reduction of cough abdominal electromyogram (EMG) amplitudes and very limited temporal changes of cough compared with effects on breathing (very high respiratory rate, high amplitude inspiratory bursts with a short inspiratory phase, and tonic inspiratory motor component). Mean arterial blood pressure temporarily decreased. Blocking glutamate-related neuronal excitation by bilateral microinjections of nonspecific glutamate receptor antagonist kynurenic acid reduced cough inspiratory and expiratory EMG amplitude and shortened most cough temporal characteristics similarly to breathing temporal characteristics. Respiratory rate decreased and blood pressure temporarily increased. Limiting active neuronal inhibition by unilateral and bilateral microinjections of GABAA receptor antagonist gabazine resulted in lower cough number, reduced expiratory cough efforts, and prolongation of cough temporal features and breathing phases (with lower respiratory rate). The PreBötC is important for cough motor pattern generation. Excitatory glutamatergic neurotransmission in the PreBötC is involved in control of cough intensity and patterning. GABAA receptor-related inhibition in the PreBötC strongly affects breathing and coughing phase durations in the same manner, as well as cough expiratory efforts. In conclusion, differences in effects on cough and breathing are consistent with separate control of these behaviors.NEW & NOTEWORTHY This study is the first to explore the role of the inspiratory rhythm and pattern generator, the pre-Bötzinger complex (PreBötC), in cough motor pattern formation. In the PreBötC, excitatory glutamatergic neurotransmission affects cough intensity and patterning but not rhythm, and GABAA receptor-related inhibition affects coughing and breathing phase durations similarly to each other. Our data show that the PreBötC is important for cough motor pattern generation, but cough rhythmogenesis appears to be controlled elsewhere.


Central Pattern Generators , Cough , Excitatory Amino Acid Antagonists/pharmacology , GABA-A Receptor Antagonists/pharmacology , Glutamic Acid/pharmacology , Inhalation , Medulla Oblongata , Reflex , Respiratory Rate , Abdominal Muscles/drug effects , Abdominal Muscles/physiopathology , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Cats , Central Pattern Generators/drug effects , Central Pattern Generators/metabolism , Central Pattern Generators/physiopathology , Cough/drug therapy , Cough/metabolism , Cough/physiopathology , Electromyography , Excitatory Amino Acid Antagonists/administration & dosage , Female , GABA-A Receptor Antagonists/administration & dosage , Glutamic Acid/administration & dosage , Glutamic Acid/analysis , Homocysteine/analogs & derivatives , Homocysteine/pharmacology , Inhalation/drug effects , Inhalation/physiology , Kynurenic Acid/pharmacology , Male , Medulla Oblongata/drug effects , Medulla Oblongata/metabolism , Medulla Oblongata/physiopathology , Pyridazines/pharmacology , Reflex/drug effects , Reflex/physiology , Respiratory Rate/drug effects , Respiratory Rate/physiology
6.
J Biomed Sci ; 28(1): 83, 2021 Dec 02.
Article En | MEDLINE | ID: mdl-34852810

Addictive drugs are habit-forming. Addiction is a learned behavior; repeated exposure to addictive drugs can stamp in learning. Dopamine-depleted or dopamine-deleted animals have only unlearned reflexes; they lack learned seeking and learned avoidance. Burst-firing of dopamine neurons enables learning-long-term potentiation (LTP)-of search and avoidance responses. It sets the stage for learning that occurs between glutamatergic sensory inputs and GABAergic motor-related outputs of the striatum; this learning establishes the ability to search and avoid. Independent of burst-firing, the rate of single-spiking-or "pacemaker firing"-of dopaminergic neurons mediates motivational arousal. Motivational arousal increases during need states and its level determines the responsiveness of the animal to established predictive stimuli. Addictive drugs, while usually not serving as an external stimulus, have varying abilities to activate the dopamine system; the comparative abilities of different addictive drugs to facilitate LTP is something that might be studied in the future.


Behavior, Addictive/psychology , Dopamine/deficiency , Dopaminergic Neurons/metabolism , Learning/drug effects , Long-Term Potentiation , Reflex , Animals , Appetitive Behavior/drug effects , Avoidance Learning/drug effects , Mice , Rats , Reflex/drug effects
7.
Clin Neurophysiol ; 132(12): 2989-2995, 2021 12.
Article En | MEDLINE | ID: mdl-34715423

OBJECTIVE: In this neurophysiological study in healthy humans, we assessed how central sensitization induced by either high-frequency stimulation (HFS) or topical capsaicin application modulates features of the RIII reflex response. The ability of these stimuli to engage the endogenous pain modulatory system was also tested. METHODS: In 26 healthy participants we elicited an RIII reflex using suprathreshold stimulation of the sural nerve. Subsequently HFS or capsaicin were applied to the foot and the RIII reflex repeated after 15 minutes. Contact heating of the volar forearm served as the heterotopic test stimulus to probe activation of the endogenous pain modulatory system. RESULTS: HFS significantly reduced the pain threshold by 29% and the RIII reflex threshold by 20%. Capsaicin significantly reduced the pain threshold by 17% and the RIII reflex threshold by 18%. Both HFS and capsaicin left RIII reflex size unaffected. Numerical Rating Scale (NRS) pain scores elicited by the heterotopic noxious heat stimulus were unaffected by capsaicin and slightly increased by HFS. CONCLUSIONS: HFS and capsaicin similarly modulated the pain threshold and RIII reflex threshold, without a concomitant inhibitory effect of the endogenous pain modulatory system. SIGNIFICANCE: Our neurophysiological study supports the use of the RIII reflex in investigating central sensitization in humans.


Central Nervous System Sensitization/physiology , Hyperalgesia/physiopathology , Nociception/physiology , Reflex/physiology , Sural Nerve/physiopathology , Adult , Capsaicin/administration & dosage , Central Nervous System Sensitization/drug effects , Electric Stimulation , Female , Humans , Male , Models, Theoretical , Nociception/drug effects , Pain Threshold/physiology , Physical Stimulation , Reflex/drug effects , Sensory System Agents/administration & dosage , Sural Nerve/drug effects
8.
BMC Anesthesiol ; 21(1): 234, 2021 09 29.
Article En | MEDLINE | ID: mdl-34587905

BACKGROUND: Postoperative nausea and vomiting (PONV) as a clinically most common postoperative complication requires multimodal antiemetic medications targeting at a wide range of neurotransmitter pathways. Lacking of neurobiological mechanism makes this 'big little problem' still unresolved. We aim to investigate whether gut-vagus-brain reflex generally considered as one of four typical emetic neuronal pathways might be the primary mediator of PONV. METHODS: Three thousand two hundred twenty-three patients who underwent vagus nerve trunk resection (esophagectomy and gastrectomy) and non-vagotomy surgery (hepatectomy, pulmonary lobectomy and colorectomy) from December 2016 to January 2019 were enrolled. Thirty cases of gastrectomy with selective resection on the gastric branch of vagus nerve were also recruited. Nausea and intensity of vomiting was recorded within 24 h after the operation. RESULTS: PONV occurred in 11.9% of 1187 patients who underwent vagus nerve trunk resection and 28.7% of 2036 non-vagotomy patients respectively. Propensity score matching showed that vagotomy surgeries accounted for 19.9% of the whole PONV incidence, much less than that observed in the non-PONV group (35.1%, P <  0.01). Multivariate logistic regression result revealed that vagotomy was one of underlying factor that significantly involved in PONV (OR = 0.302, 95% CI, 0.237-0.386). Nausea was reported in 5.9% ~ 8.6% vagotomy and 12 ~ 17% non-vagotomy patients. Most vomiting were mild, being approximately 3% in vagotomy and 8 ~ 13% in non-vagotomy patients, while sever vomiting was much less experienced. Furthermore, lower PONV occurrence (10%) was also observed in gastrectomy undergoing selective vagotomy. CONCLUSION: Patients undergoing surgeries with vagotomy developed less PONV, suggesting that vagus nerve dependent gut-brain signaling might mainly contribute to PONV.


Analgesia/methods , Brain-Gut Axis/drug effects , Brain/drug effects , Postoperative Nausea and Vomiting/epidemiology , Vagus Nerve/drug effects , Vagus Nerve/surgery , Brain/physiopathology , Cohort Studies , Female , Humans , Male , Middle Aged , Neural Pathways/drug effects , Reflex/drug effects
9.
Life Sci ; 285: 119960, 2021 Nov 15.
Article En | MEDLINE | ID: mdl-34536495

AIMS: Sertraline (SE) is one of the most prescribed medications for treating gestational depression, anxiety and stress. However, little is known about its effects on nervous-system development in offspring. Therefore, this study investigated the somatic, reflex and neurobehavioral development of rats exposed to SE during pregnancy, associated or not with stress. MAIN METHODS: Pregnant Wistar rats were assigned to the following groups (n = 10-8 rats/group): CO - control animals administered filtered water by gavage; SE - animals administered 20 mg/kg SE by gavage; ST - animals subjected to restraining stress and administered filtered water; ST/SE - animals subjected to restraining stress and administered 20 mg/kg SE. The treatment was administered between gestational days (GD) 13 to 20. Somatic and reflex developments were investigated in the male offspring from postnatal day (PND) 1 to 21. The elevated plus maze was performed on PND 25 and 80. The open field and light/dark box test were performed on PND 90 and 100, respectively. KEY FINDINGS: Body weight reduction and vaginal bleeding were observed in pregnant rats exposed to SE. The male offspring of the SE group showed delay in incisor eruption, fur development and negative geotaxis. In addition, the SE group was less exploratory (anxious personality) compared to the CO and ST groups. SIGNIFICANCE: The results obtained in the present study demonstrate that sertraline not only impairs maternal health, but also, associated or not with stress, can compromise the somatic, reflex and neurobehavioral development of male rats.


Animal Fur/drug effects , Antidepressive Agents/adverse effects , Maternal Exposure/adverse effects , Prenatal Exposure Delayed Effects/chemically induced , Sertraline/adverse effects , Stress, Psychological/drug therapy , Tooth Eruption/drug effects , Uterine Hemorrhage/chemically induced , Animals , Animals, Newborn , Antidepressive Agents/administration & dosage , Female , Incisor/growth & development , Male , Maze Learning/drug effects , Pregnancy , Rats , Rats, Wistar , Reflex/drug effects , Sertraline/administration & dosage , Taxis Response/drug effects , Weight Loss
10.
Am J Physiol Regul Integr Comp Physiol ; 321(4): R558-R571, 2021 10 01.
Article En | MEDLINE | ID: mdl-34405704

Orexin neurons are active in wakefulness and mostly silent in sleep. In adult rats and humans, orexin facilitates the hypercapnic ventilatory response but has little effect on resting ventilation. The influence of orexin on breathing in the early postnatal period, and across states of vigilance, have not been investigated. This is relevant as the orexin system may be impaired in Sudden Infant Death Syndrome (SIDS) cases. We addressed three hypotheses: 1) orexin provides a drive to breathe in infancy; 2) the effect of orexin depends on stage of postnatal development; and 3) orexin has a greater influence on breathing in wakefulness compared with sleep. Whole body plethysmography was used to monitor breathing of infant rats at three ages: postnatal days (P) 7-8, 12-14, and 17-19. Respiratory variables were analyzed in wakefulness (W), quiet sleep (QS), and active sleep (AS), following suvorexant (5 mg/kg ip), a dual orexin receptor antagonist, or vehicle (DMSO). Effects of suvorexant on ventilatory responses to graded hypercapnia ([Formula: see text] = 0.02, 0.04, 0.06), hypoxia ([Formula: see text] = 0.10), and hyperoxia ([Formula: see text] = 1.0) at P12-14 were also tested. At P12-14, but not at other ages, suvorexant significantly reduced respiratory frequency in all states, reduced the ventilatory equivalent in QW and QS, and increased [Formula: see text] to ∼5 mmHg. Suvorexant had no effect on ventilatory responses to graded hypercapnia or hypoxia. Hyperoxia eliminated the effects of suvorexant on respiratory frequency at P12-14. Our data suggest that orexin preserves eupneic frequency and ventilation in rats, specifically at ∼2 wk of age, perhaps by facilitating tonic peripheral chemoreflex activity.


Chemoreceptor Cells/metabolism , Lung/innervation , Orexins/metabolism , Pulmonary Ventilation , Reflex , Respiratory Mechanics , Animals , Animals, Newborn , Azepines/pharmacology , Chemoreceptor Cells/drug effects , Hypercapnia/metabolism , Hypercapnia/physiopathology , Hypoxia/metabolism , Hypoxia/physiopathology , Orexin Receptor Antagonists/pharmacology , Orexin Receptors/metabolism , Pulmonary Ventilation/drug effects , Rats, Sprague-Dawley , Reflex/drug effects , Respiratory Mechanics/drug effects , Sleep , Triazoles/pharmacology , Wakefulness
11.
J Pain ; 22(11): 1477-1496, 2021 11.
Article En | MEDLINE | ID: mdl-34229074

Moderate to severe pain is often treated with opioids, but central mechanisms underlying opioid analgesia are poorly understood. Findings thus far have been contradictory and none could infer opioid specific effects. This placebo-controlled, randomized, 2-way cross-over, double-blinded study aimed to explore opioid specific effects on central processing of external stimuli. Twenty healthy male volunteers were included and 3 sets of assessments were done at each of the 2 visits: 1) baseline, 2) during continuous morphine or placebo intravenous infusion and 3) during simultaneous morphine + naloxone or placebo infusion. Opioid antagonist naloxone was introduced in order to investigate opioid specific effects by observing which morphine effects are reversed by this intervention. Quantitative sensory testing, spinal nociceptive withdrawal reflexes (NWR), spinal electroencephalography (EEG), cortical EEG responses to external stimuli and resting EEG were measured and analyzed. Longer lasting pain (cold-pressor test - hand in 2° water for 2 minutes, tetanic electrical), deeper structure pain (bone pressure) and strong nociceptive (NWR) stimulations were the most sensitive quantitative sensory testing measures of opioid analgesia. In line with this, the principal opioid specific central changes were seen in NWRs, EEG responses to NWRs and cold-pressor EEG. The magnitude of NWRs together with amplitudes and insular source strengths of the corresponding EEG responses were attenuated. The decreases in EEG activity were correlated to subjective unpleasantness scores. Brain activity underlying slow cold-pressor EEG (1-4Hz) was decreased, whereas the brain activity underlying faster EEG (8-12Hz) was increased. These changes were strongly correlated to subjective pain relief. This study points to evidence of opioid specific effects on perception of external stimuli and the underlying central responses. The analgesic response to opioids is likely a synergy of opioids acting at both spinal and supra-spinal levels of the central nervous system. Due to the strong correlations with pain relief, the changes in EEG signals during cold-pressor test have the potential to serve as biomarkers of opioid analgesia. PERSPECTIVE: This exploratory study presents evidence of opioid specific effects on the pain system at peripheral and central levels. The findings give insights into which measures are the most sensitive for assessing opioid-specific effects.


Analgesics, Opioid/pharmacology , Central Nervous System/drug effects , Central Nervous System/physiopathology , Morphine/pharmacology , Naloxone/pharmacology , Narcotic Antagonists/pharmacology , Nociceptive Pain/drug therapy , Nociceptive Pain/physiopathology , Pain Threshold/drug effects , Adult , Analgesics, Opioid/administration & dosage , Cross-Over Studies , Double-Blind Method , Electroencephalography , Humans , Male , Morphine/administration & dosage , Naloxone/administration & dosage , Narcotic Antagonists/administration & dosage , Pupil/drug effects , Pupil/physiology , Reflex/drug effects , Reflex/physiology , Young Adult
12.
Pak J Pharm Sci ; 34(2): 499-506, 2021 Mar.
Article En | MEDLINE | ID: mdl-34275822

Natural oils are rich in polyunsaturated fatty acids (PUFs) like omega 3, omega 6 and other nutrients that boost physical and mental health. Traditionally these oils have been used to treat joint pain associated with several inflammatory conditions. In this study, we investigated the antioxidant and analgesic properties of the sesame oil (SO), fish oil (FO) and combination of these two oils (SO+FO). Different concentrations of the SO, FO and SO+FO combination 0.02-4mg/ml were used for assessing the free radical scavenging activity by DPPH method and the IC50 value was calculated. Acetic acid-induced abdominal writhing test, tail immersion and hot plate models were used to determined analgesic effect. Results showed that both oils were well tolerated as no signs of toxicity or death were noticed during the observational study period. SO+FO combination showed the best antioxidant properties as shown by DPPH assay. Similarly in analgesic models, SO and FO significantly reduced the number of abdominal contractions (p<0.05) however, SO+FO (1:1) exhibited highly significant results (p<0.001) in writhing reflex test. Furthermore, SO and FO both increased the reaction time on a hot plate as well as in tail flick test (p<0.05) whereas, SO+FO significantly increased reaction time (p<0.001) in hot plate and in tail flick test as compared to SO and FO single treatments. Conclusively, our results suggest that the combination of both oils (SO+FO) exhibited significant antioxidant and analgesic potential that it could be considered as one of the active combinations for relieving pain in adjunctive treatment for joint pain associated with rheumatoid arthritis.


Analgesics/pharmacology , Antioxidants/pharmacology , Behavior, Animal/drug effects , Fish Oils/pharmacology , Nociception/drug effects , Sesame Oil/pharmacology , Acetic Acid , Animals , Biphenyl Compounds , Hot Temperature , Indicators and Reagents , Injections, Intraperitoneal , Mice , Oxidative Stress/drug effects , Picrates , Reaction Time/drug effects , Reflex/drug effects , Sharks
13.
Sci Rep ; 11(1): 14648, 2021 07 19.
Article En | MEDLINE | ID: mdl-34282171

Reflex cardiorespiratory alterations elicited after instillation of nociceptive agents intra-arterially (i.a) are termed as 'vasosensory reflex responses'. The present study was designed to evaluate such responses produced after i.a. instillation of histamine (1 mM; 10 mM; 100 mM) and to delineate the pathways i.e. the afferents and efferents mediating these responses. Blood pressure, electrocardiogram and respiratory excursions were recorded before and after injecting saline/histamine, in a local segment of femoral artery in urethane anesthetized rats. Paw edema and latencies of responses were also estimated. Separate groups of experiments were conducted to demonstrate the involvement of somatic nerves in mediating histamine-induced responses after ipsilateral femoral and sciatic nerve sectioning (+NX) and lignocaine pre-treatment (+Ligno). In addition, another set of experiments was performed after bilateral vagotomy (+VagX) and the responses after histamine instillation were studied. Histamine produced concentration-dependent hypotensive, bradycardiac, tachypnoeic and hyperventilatory responses of shorter latencies (2-7 s) favouring the neural mechanisms in eliciting the responses. Instillation of saline (time matched control) in a similar fashion produced no response, excluding the possibilities of ischemic/stretch effects. Paw edema was absent in both hind limbs indicating that the histamine did not reach the paws and did not spill out into the systemic circulation. +NX, +VagX, +Ligno attenuated histamine-induced cardiorespiratory responses significantly. These observations conclude that instillation of 10 mM of histamine produces optimal vasosensory reflex responses originating from the local vascular bed; afferents and efferents of which are mostly located in ipsilateral somatic and vagus nerves respectively.


Endothelium, Vascular/innervation , Histamine/pharmacology , Peripheral Nervous System/drug effects , Reflex/drug effects , Afferent Pathways/drug effects , Afferent Pathways/physiology , Animals , Blood Pressure/drug effects , Bradycardia/chemically induced , Bradycardia/physiopathology , Endothelium, Vascular/drug effects , Heart Rate/drug effects , Heart Rate/physiology , Hyperventilation/chemically induced , Hyperventilation/physiopathology , Male , Peripheral Nervous System/physiology , Rats , Reflex/physiology , Tachypnea/chemically induced , Tachypnea/physiopathology , Vagus Nerve/drug effects , Vagus Nerve/physiology , Vasodilation/drug effects , Vasodilation/physiology
14.
PLoS One ; 16(6): e0253192, 2021.
Article En | MEDLINE | ID: mdl-34166394

Urodynamic studies in rats and mice are broadly used to examine pathomechnisms of disease and identify and test therapeutic targets. This review aims to highlight the effects of the anesthetics on the lower urinary tract function and seeks to identify protocols that allow recovery from anesthesia and repeated measurements while preserving the function which is being studied. All studies published in English language, which compared the data obtained under various types of anesthesia and the urodynamics performed in awake animals were included. It appears that urethane, an anesthetic recommended extensively for the investigation of lower urinary tract function, is appropriate for acute urodynamic studies only. Major advantages of urethane are its stability and ability to preserve the micturition reflex. Due to its toxicity and carcinogenicity, urethane anesthesia should not be used for recovery procedures. This review evaluated available alternatives including propofol, isoflurane and combinations of urethane, ketamine/xylazine, ketamine/medetomidine, and/or fentanyl/fluanisone/midazolam. Different effects have been demonstrated among these drugs on the urinary bladder, the urethral sphincter, as well as on their neuroregulation. The lowest incidence of adverse effects was observed with the use of a combination of ketamine and xylazine. Although the variations in the reviewed study protocols represent a limitation, we believe that this summary will help in standardizing and optimizing future experiments.


Anesthesia/methods , Anesthetics/pharmacology , Reflex/drug effects , Urinary Bladder/physiopathology , Urodynamics/drug effects , Animals , Mice , Rats , Urination/drug effects
15.
J Neurophysiol ; 126(1): 1-10, 2021 07 01.
Article En | MEDLINE | ID: mdl-34038189

The exercise pressor reflex (EPR) originates in skeletal muscle and is activated by exercise-induced signals to increase arterial blood pressure and cardiac output. Muscle ischemia can elicit the EPR, which can be inappropriately activated in patients with peripheral vascular disease or heart failure to increase the incidence of myocardial infarction. We seek to better understand the receptor/channels that control excitability of group III and group IV muscle afferent fibers that give rise to the EPR. Bradykinin (BK) is released within contracting muscle and can evoke the EPR. However, the mechanism is incompletely understood. KV7 channels strongly regulate neuronal excitability and are inhibited by BK. We have identified KV7 currents in muscle afferent neurons by their characteristic activation/deactivation kinetics, enhancement by the KV7 activator retigabine, and block by KV7 specific inhibitor XE991. The blocking of KV7 current by different XE991 concentrations suggests that the KV7 current is generated by both KV7.2/7.3 (high affinity) and KV7.5 (low affinity) channels. The KV7 current was inhibited by 300 nM BK in neurons with diameters consistent with both group III and group IV afferents. The inhibition of KV7 by BK could be a mechanism by which this metabolic mediator generates the EPR. Furthermore, our results suggest that KV7 channel activators such as retigabine, could be used to reduce cardiac stress resulting from the exacerbated EPR in patients with cardiovascular disease.NEW & NOTEWORTHY KV7 channels control neuronal excitability. We show that these channels are expressed in muscle afferents and generate currents that are blocked by XE991 and bradykinin (BK). The XE991 block suggests that KV7 current is generated by KV7.2/3 and KV7.5 channels. The BK inhibition of KV7 channels may explain how BK activates the exercise pressor reflex (EPR). Retigabine can enhance KV7 current, which could help control the inappropriately activated EPR in patients with cardiovascular disease.


KCNQ Potassium Channels/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Physical Conditioning, Animal/physiology , Reflex/physiology , Animals , Anthracenes/pharmacology , Anticonvulsants/pharmacology , Carbamates/pharmacology , Dose-Response Relationship, Drug , KCNQ Potassium Channels/antagonists & inhibitors , Male , Muscle Contraction/drug effects , Muscle, Skeletal/drug effects , Phenylenediamines/pharmacology , Rats , Rats, Sprague-Dawley , Reflex/drug effects
16.
Article En | MEDLINE | ID: mdl-33829976

BACKGROUND: Since long back, it has been a matter of discussion regarding the role of peripheral blood vessels in the regulation of cardiorespiratory (CVR) system. OBJECTIVE: The role of 5-HT3 and TRPV1 receptors present on perivascular nerves in elicitation of CVR reflexes was examined after intra-arterial instillation of bradykinin in urethane anesthetized rats. MATERIALS AND METHODS: Femoral artery was cannulated retrogradely and was utilized for the instillation of saline/agonist/antagonist and recording of blood pressure (BP), using a double ported 24G cannula. BP, respiration and ECG were recorded for 30 min after bradykinin (1 µM) in the absence or presence of antagonists. RESULTS: Instillation of bradykinin produced immediate hypotensive (40%), bradycardiac (17%), tachypnoeic (45%) and hyperventilatory (96%) responses of shorter latencies (5-8 s) favoring the neural mechanisms in producing the responses. In lignocaine (2%) pretreated animals, bradykinin- induced hypotensive (10%), bradycardiac (1.7%), tachypnoeic (13%) and hyperventilatory (13%) responses attenuated significantly. Pretreatment with ondansetron (100 µg/kg), 5-HT3-antagonist attenuated the hypotensive (10%), bradycardiac (1.7%), tachypnoeic (11%) and hyperventilatory (11%) responses significantly. Pretreatment with capsazepine (1 mg/kg), transient receptor potential vanilloid 1- antagonist blocked the hypotensive (5%), bradycardiac (1.2%), tachypnoeic (6%) and hyperventilatory (6%) responses significantly. CONCLUSION: In conclusion, presence of a nociceptive agent in the local segment of an artery evokes vasosensory reflex responses modulating CVR parameters involving TRPV1 and 5-HT3 receptors present on the perivascular sensory nerve terminals in anesthetized rats.


Bradykinin/pharmacology , Receptors, Serotonin, 5-HT3/metabolism , TRPV Cation Channels/metabolism , Vasodilator Agents/pharmacology , Animals , Bradykinin/administration & dosage , Hypotension/chemically induced , Hypotension/metabolism , Male , Nociception/drug effects , Rats , Reflex/drug effects , Respiration/drug effects , Vasodilator Agents/administration & dosage
17.
Mol Pain ; 17: 17448069211000910, 2021.
Article En | MEDLINE | ID: mdl-33719729

Common approaches to studying mechanisms of chronic pain and sensory changes in pre-clinical animal models involve measurement of acute, reflexive withdrawal responses evoked by noxious stimuli. These methods typically do not capture more subtle changes in sensory processing nor report on the consequent behavioral changes. In addition, data collection and analysis protocols are often labour-intensive and require direct investigator interactions, potentially introducing bias. In this study, we develop and characterize a low-cost, easily assembled behavioral assay that yields self-reported temperature preference from mice that is responsive to peripheral sensitization. This system uses a partially automated and freely available analysis pipeline to streamline the data collection process and enable objective analysis. We found that after intraplantar administration of the TrpV1 agonist, capsaicin, mice preferred to stay in cooler temperatures than saline injected mice. We further observed that gabapentin, a non-opioid analgesic commonly prescribed to treat chronic pain, reversed this aversion to higher temperatures. In contrast, optogenetic activation of the central terminals of TrpV1+ primary afferents via in vivo spinal light delivery did not induce a similar change in thermal preference, indicating a possible role for peripheral nociceptor activity in the modulation of temperature preference. We conclude that this easily produced and robust sensory assay provides an alternative approach to investigate the contribution of central and peripheral mechanisms of sensory processing that does not rely on reflexive responses evoked by noxious stimuli.


Capsaicin/pharmacology , Hot Temperature , Nociceptors/drug effects , Pain/drug therapy , Reflex/drug effects , Animals , Behavior, Animal/drug effects , Male , Mice , Nociceptors/metabolism , Optogenetics/methods , Pain/physiopathology , Physical Stimulation/methods , Reflex/physiology , TRPV Cation Channels/genetics
18.
Am J Physiol Heart Circ Physiol ; 320(4): H1498-H1509, 2021 04 01.
Article En | MEDLINE | ID: mdl-33513085

Paraquat (PQT) herbicide is widely used in agricultural practices despite being highly toxic to humans. It has been proposed that PQT exposure may promote cardiorespiratory impairment. However, the physiological mechanisms involved in cardiorespiratory dysfunction following PQT exposure are poorly known. We aimed to determine the effects of PQT on ventilatory chemoreflex control, cardiac autonomic control, and cardiac function in rats. Male Sprague-Dawley rats received two injections/week of PQT (5 mg·kg-1 ip) for 4 wk. Cardiac function was assessed through echocardiography and pressure-volume loops. Ventilatory function was evaluated using whole body plethysmography. Autonomic control was indirectly evaluated by heart rate variability (HRV). Cardiac electrophysiology (EKG) and exercise capacity were also measured. Four weeks of PQT administration markedly enlarged the heart as evidenced by increases in ventricular volumes and induced cardiac diastolic dysfunction. Indeed, end-diastolic pressure was significantly higher in PQT rats compared with control (2.42 ± 0.90 vs. 4.01 ± 0.92 mmHg, PQT vs. control, P < 0.05). In addition, PQT significantly reduced both the hypercapnic and hypoxic ventilatory chemoreflex response and induced irregular breathing. Also, PQT induced autonomic imbalance and reductions in the amplitude of EKG waves. Finally, PQT administration impaired exercise capacity in rats as evidenced by a ∼2-fold decrease in times-to-fatigue compared with control rats. Our results showed that 4 wk of PQT treatment induces cardiorespiratory dysfunction in rats and suggests that repetitive exposure to PQT may induce harmful mid/long-term cardiovascular, respiratory, and cardiac consequences.NEW & NOREWORTHY Paraquat herbicide is still employed in agricultural practices in several countries. Here, we showed for the first time that 1 mo paraquat administration results in cardiac adverse remodeling, blunts ventilatory chemoreflex drive, and promotes irregular breathing at rest in previously healthy rats. In addition, paraquat exposure induced cardiac autonomic imbalance and cardiac electrophysiology alterations. Lastly, cardiac diastolic dysfunction was overt in rats following 1 mo of paraquat treatment.


Arrhythmias, Cardiac/chemically induced , Autonomic Nervous System/drug effects , Chemoreceptor Cells/drug effects , Heart Rate/drug effects , Heart/innervation , Herbicides/toxicity , Hypertrophy, Left Ventricular/chemically induced , Lung/innervation , Paraquat/toxicity , Pulmonary Ventilation/drug effects , Reflex/drug effects , Animals , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Autonomic Nervous System/physiopathology , Chemoreceptor Cells/metabolism , Exercise Tolerance/drug effects , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/physiopathology , Male , Rats, Sprague-Dawley , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects
19.
Neuroreport ; 32(3): 214-222, 2021 02 03.
Article En | MEDLINE | ID: mdl-33470760

OBJECTIVE: This study aimed to observe the effect of glutamine (Gln) on brain damage in septic rats and explore its possible mechanism. METHODS: Ninety-three Sprague-Dawley rats were randomly divided into five groups: sham operation group, sepsis group, Gln-treated group, quercetin/Gln-treated group, and alloxan/Gln-treated group. The rats in each group were continuously monitored for mean arterial pressure (MAP) and heart rate changes for 16 h. Neuroreflex scores were measured 24 h after surgery. The water content of the brain tissue was measured. Plasma neuron enolase and cysteine protease-3 were measured using the ELISA. The expression levels of heat shock protein 70 (HSP70) and oxygen-N-acetylglucosamine (O-GlcNAc) were determined by western blot analysis. Finally, the brain tissue was observed via hematoxylin and eosin staining. RESULTS: The brain tissue water content, plasma neuron enolase content, brain tissue cysteine protease-3 content, and nerve reflex score were significantly lower in the Gln-treated group than in the sepsis group (P < 0.05). At the same time, the pathological brain tissue damage in the Gln-treated group was also significantly reduced. It is worth noting that the expression of HSP70 and the protein O-GlcNAc modification levels in the Gln-treated group were significantly elevated than the levels in the sepsis group (P < 0.05), and reversed by pretreatment with the HSP and O-GlcNAc inhibitors quercetion and alloxan. CONCLUSIONS: Gln can attenuate brain damage in rats with sepsis, which may be associated with increased protein O-GlcNAc modification.


Arterial Pressure/drug effects , Brain/drug effects , Cysteine Proteases/drug effects , Glutamine/pharmacology , Heart Rate/drug effects , Phosphopyruvate Hydratase/drug effects , Reflex/drug effects , Sepsis/metabolism , Acetylglucosamine/metabolism , Alloxan/pharmacology , Animals , Antioxidants/pharmacology , Blinking/drug effects , Blotting, Western , Brain/metabolism , Cysteine Proteases/metabolism , Enzyme-Linked Immunosorbent Assay , HSP70 Heat-Shock Proteins/drug effects , HSP70 Heat-Shock Proteins/metabolism , Phosphopyruvate Hydratase/metabolism , Quercetin/pharmacology , Rats , Reflex, Righting/drug effects , Sepsis/mortality
20.
J Ethnopharmacol ; 270: 113862, 2021 Apr 24.
Article En | MEDLINE | ID: mdl-33484906

ETHNOPHARMACOLOGICAL RELEVANCE: Phyllanthus niruri L. (Phyllanthaceae) is a plant used in traditional medicine, mainly to treat kidney stones. However, the effects of maternal exposure to P. niruri remain poorly explored. AIM OF THE STUDY: The objective of this study was to investigate the effects of administration of aqueous extract of P. niruri (AEPN) during pregnancy and lactation, in maternal toxicity, reflex maturation, and offspring memory. MATERIALS AND METHODS: Pregnant rats were divided into three groups (n = 8/group): Control (vehicle), AEPN 75, and AEPN 150 (each respectively treated with P. niruri at a dose of 75 and 150 mg/kg/day). The animals were treated via intragastric gavage during pregnancy and lactation. Weight gain, feed intake, and reproductive performance were analyzed in the mothers. In the offspring, the following tests were performed: Neonatal Reflex Ontogeny, Open Field Habituation Test and the Object Recognition Test in adulthood. RESULTS: Maternal exposure to AEPN did not influence weight gain, feed intake, or reproductive parameters. In the offspring, anticipation of reflex ontogenesis (time of completion) was observed (p < 0.05). During adulthood, the AEPN groups presented decreases in exploratory activity upon their second exposure to the Open Field Habituation Test (in a dose-dependent manner) (p < 0.05). In the Object Recognition Test, administration of the extract at 75 and 150 mg/kg induced significant dose-dependent improvements in short and long-term memory (p < 0.05). CONCLUSION: Administration of the AEPN accelerated the reflex maturation in neonates, and improved offspring memory while inducing no maternal or neonatal toxicity.


Behavior, Animal/drug effects , Brain/drug effects , Lactation/drug effects , Phyllanthus/chemistry , Plant Extracts/pharmacology , Animals , Animals, Newborn , Body Weight/drug effects , Dose-Response Relationship, Drug , Exploratory Behavior/drug effects , Female , Locomotion/drug effects , Male , Maternal Exposure/adverse effects , Memory/drug effects , Plant Extracts/toxicity , Pregnancy , Rats, Wistar , Recognition, Psychology/drug effects , Reflex/drug effects , Reproduction/drug effects
...